
Summary

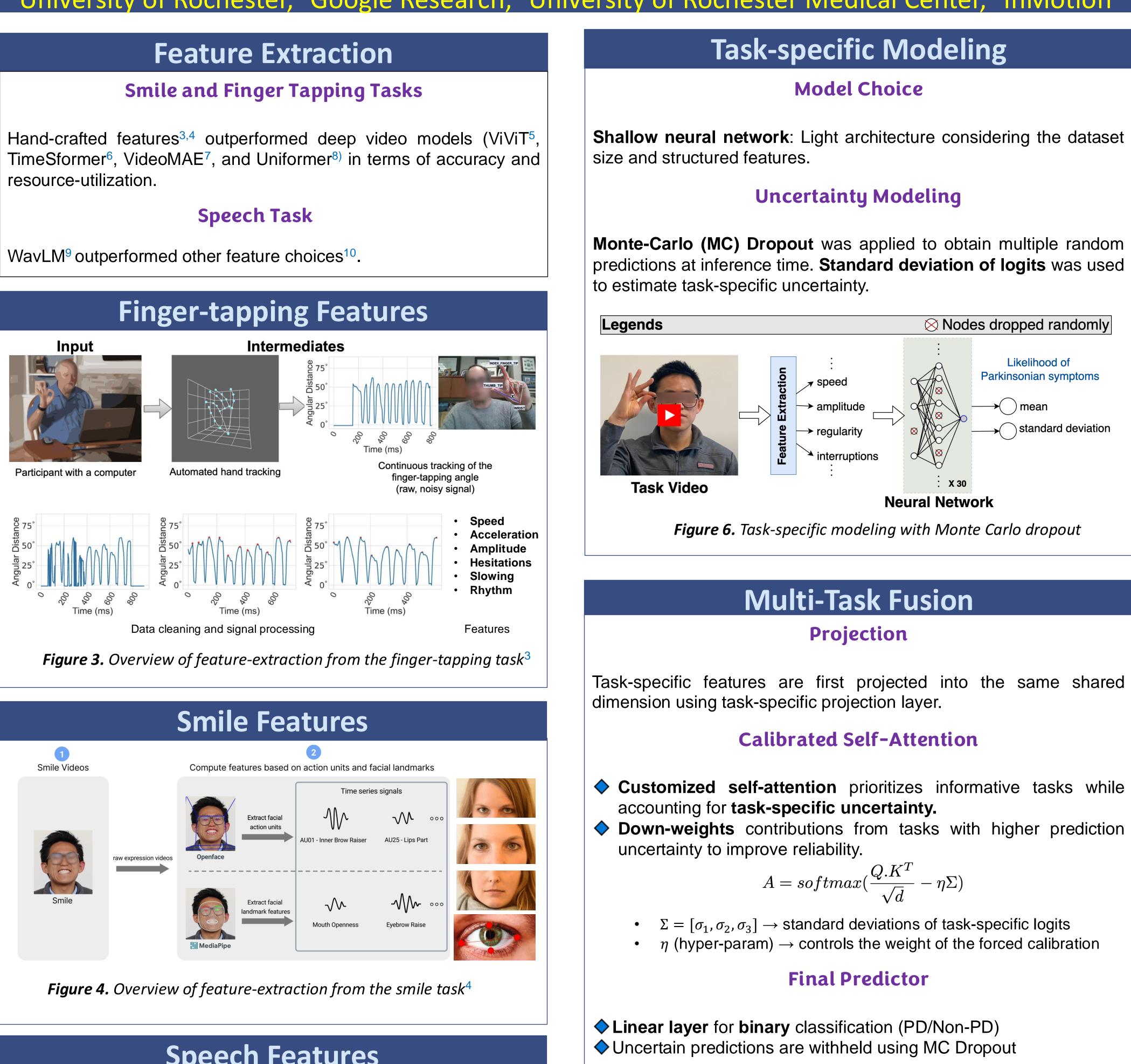
Challenge: Limited access to neurological care leads to missed diagnosis of Parkinson's Disease (PD), the fastest-growing neurological disorder¹.

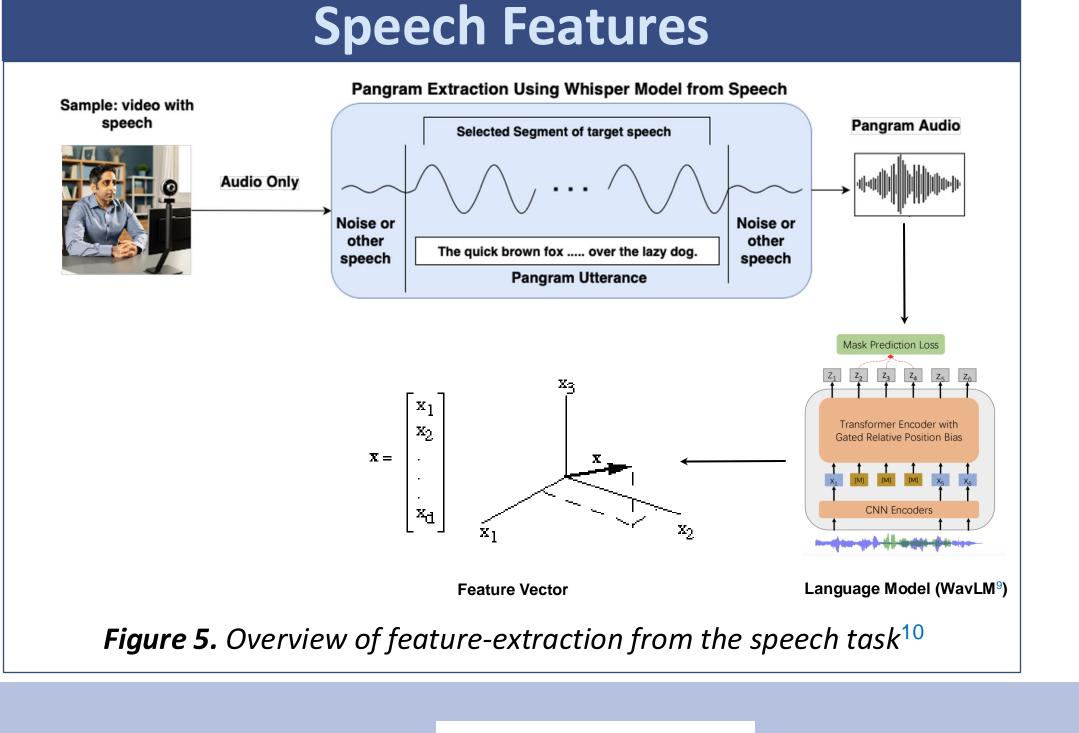
Proposed Solution: Introduced the largest multi-task video dataset (finger tapping, facial expression, speech) from 845 participants (272 PD) and a multimodal fusion network (UFNet) for comprehensive PD assessment.

Performance: Achieved 87.3% predictive accuracy and 92.8% AUROC. Built-in uncertainty measures enhance reliability by withholding predictions in cases of low model confidence.

Impact: The proposed framework promotes health Global equity by enabling accessible, home-based PD screening using just a webcam and microphone.

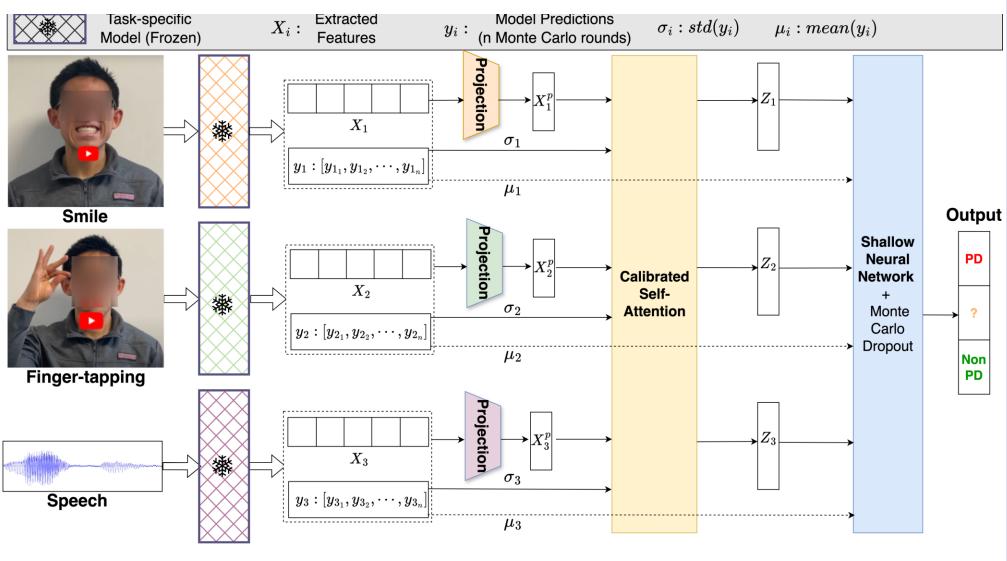
Contact


mislam6@ur.rochester.edu tadnan@ur.rochester.edu mehoque@cs.rochester.edu



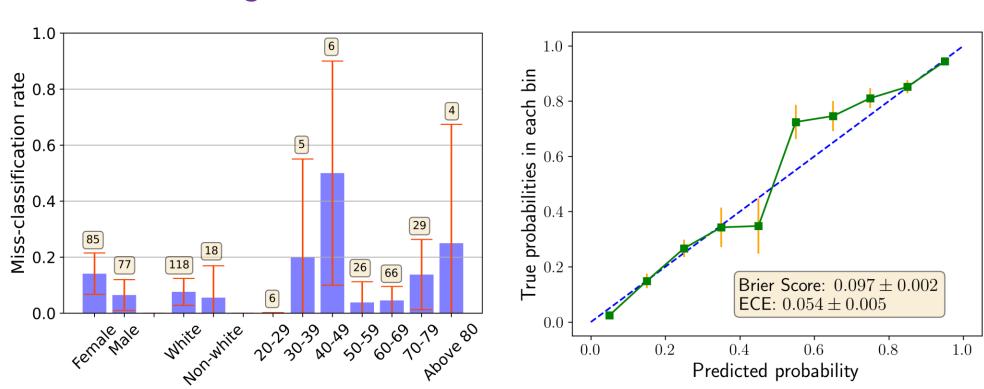
Extended Paper (AAAI 2025)

Accessible, At-Home Detection of Parkinson's Disease via Multi-Task Video Analysis


Md Saiful Islam¹; Tariq Adnan¹; Jan Freyberg²; Sangwu Lee¹; Abdelrahman Abdelkader¹; Meghan Pawlik³; Cathe Schwartz⁴; Karen Jaffe⁴; Ruth B. Schneider³; Ray Dorsey³; Ehsan Hoque¹ ¹University of Rochester, ²Google Research, ³University of Rochester Medical Center, ⁴InMotion

$$A = softmax(\frac{Q.K^T}{\sqrt{d}} - \eta \Sigma)$$

Figure 7. Overview of the UFNet architecture



References

1. Dorsey, E. Ray, et al. "The emerging evidence of the Parkinson pandemic." Journal of Parkinson's disease 8.s1 (2018): S3-S8. 2. Lees, Andrew J., John Hardy, and Tamas Revesz. "Parkinson's disease." The Lancet 373.9680 (2009): 2055-2066 3. Islam, Md Saiful, et al. "Using AI to measure Parkinson's disease severity at home." npj Digital Medicine 6.1 (2023): 156. 4. Adnan, Tariq, et al. "Unmasking Parkinson's Disease with Smile: An AI-enabled Screening Framework." *arXiv preprint arXiv:2308.02588* (2023). 5. Arnab, Anurag, et al. "Vivit: A video vision transformer." Proceedings of the IEEE/CVF international conference on computer vision. 2021.

6. Bertasius, G., Wang, H., & Torresani, L. (2021, July). Is space-time attention all you need for video understanding?. In ICML (Vol. 2, No. 3, p. 4) 7. Tong, Zhan, et al. "Videomae: Masked autoencoders are data-efficient learners for self-supervised video pre-training." *Advances in neural information processing systems* 35 (2022): 10078-10093. 8. Li, Kunchang, et al. "Uniformer: Unifying convolution and self-attention for visual recognition." *IEEE Transactions on Pattern Analysis and Machine Intelligence* 45.10 (2023): 12581-12600. 9. Chen, Sanyuan, et al. "Wavlm: Large-scale self-supervised pre-training for full stack speech processing." IEEE Journal of Selected Topics in Signal Processing 16.6 (2022): 1505-1518.

10. Adnan, Tariq, et al. "A Novel Fusion Architecture for PD Detection Using Semi-Supervised Speech Embeddings." arXiv preprint arXiv:2405.17206 (2024) 11. Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

Figure 8. (Left) Misclassification rate of the best UFNet model across demographic subgroups; (Right) Calibration curve showing the alignment between predicted probability and true observations.

Model **Baseline** m Majority Vo Neural Late Early Fusion Hybrid Fusi Attention v Dot product LRFormer¹ UFNet (our Early vs. h Early Fusion Hybrid Fusi

Table 2. UFNet performed significantly better than traditional fusion approaches. Ablation shows the efficacy of the proposed attention module.

Ethics: Mispredictions in PD detection can cause harm — false positives may lead to stress and financial burden, while false negatives delay essential care.

Bias: Our model performance is consistent across sex and ethnic subgroups, but accuracy drops for ages below 50 and above 80.

Future work: Expand the model for non-English speakers and tailor decision thresholds based on individual preferences and healthcare settings.

Dataset access: We release extracted features and code for extending the dataset (QR code below), but raw video data cannot be shared due to HIPAA compliance.

Live demo: Scan the QR code below to try it out.

Results

Effect of Multi-Task Modeling

Task Combination	Accuracy	F ₁ score	AUROC
All three tasks	87.3 ± 0.4	81.0 ± 0.6	92.8 ± 0.2
Tapping + Smile	78.0 ± 0.8	65.6 ± 1.7	84.8 ± 0.5
Tapping + Speech	84.1 ± 0.3	77.3 ± 0.4	91.4 ± 0.2
Smile + Speech	85.2 ± 0.3	75.0 ± 0.4	91.2 ± 0.1
Tapping	73.1 ± 0.7	61.7 ± 0.9	74.9 ± 0.7
Smile	77.6 ± 0.2	67.5 ± 0.3	83.6 ± 0.1
Speech	85.1 ± 0.2	72.1 ± 0.6	87.8 ± 0.1

Table 1. Multi-task combinations perform significantly better than
 corresponding single tasks.

Analysis of Bias and Model Calibration

Comparison against Baselines and Ablation Studies

	Accuracy	AUROC	F ₁ score	Precision	Recall
nodels					
oting	85.3	89.6	78.2	80.0	76.5
e Fusion	84.1 ± 0.4	91.7 ± 2.2	73.2 ± 8.3	73.5 ± 7.5	76.3 ± 9.4
on Baseline	83.6 ± 0.6	91.0 ± 0.2	76.7 ± 0.7	75.4 ± 1.1	78.1 ± 0.9
sion Baseline	84.1 ± 0.3	91.4 ± 0.2	77.3 ± 0.4	76.2 ± 0.7	78.6 ± 0.6
variants					
t self-attention ¹¹	85.5 ± 0.4	92.9 ± 0.2	78.3 ± 0.6	80.7 ± 0.6	76.1 ± 1.1
12	86.2 ± 0.5	92.6 ± 0.3	79.5 ± 0.7	81.7 ± 0.9	77.6 ± 1.0
rs)	$\overline{87.3\pm0.4}$	92.8 ± 0.2	81.0 ± 0.6	$\underline{\textbf{83.8}\pm\textbf{0.5}}$	78.4 ± 1.0
ybrid fusion					
Dn	86.7 ± 0.5	92.7 ± 0.3	79.9 ± 0.8	83.3 ± 0.7	76.9 ± 1.4
sion	$\overline{87.3\pm0.4}$	92.8 ± 0.2	81.0 ± 0.6	$\overline{83.8\pm0.5}$	78.4 ± 1.0
				• • •	

Discussion

12. Ye, Wenqian, et al. "Mitigating transformer overconfidence via Lipschitz regularization." Uncertainty in Artificial Intelligence. PMLR, 2023.